Mathematical morphology 820


 
Modulekode WTW 820
Kwalifikasie Postgraduate
Fakulteit Faculty of Natural and Agricultural Sciences
Module-inhoud

Mathematical morphology – a theory for the analysis of special structures and a powerful methodology for the extraction of useful information from images. Morphological operators and their properties: erosion, dilation, opening, closing, granulometries. Applications to noise removal, filtering, extraction of features, edge detection, etc. LULU operators - properties and applications. Partial differential equations for morphological operators.

Modulekrediete 1.00
NQF Level 09
Prerequisites Measure Theory and Functional Analysis on honours level
Contact time 1 lecture per week
Language of tuition Module is presented in English
Department Mathematics and Applied Mathematics
Period of presentation Semester 1

Die inligting wat hier verskyn, is onderhewig aan verandering en kan na die publikasie van hierdie inligting gewysig word.. Die Algemene Regulasies (G Regulasies) is op alle fakulteite van die Universiteit van Pretoria van toepassing. Dit word vereis dat elke student volkome vertroud met hierdie regulasies sowel as met die inligting vervat in die Algemene Reëls sal wees. Onkunde betrefffende hierdie regulasies en reels sal nie as ‘n verskoning by oortreding daarvan aangebied kan word nie.

Copyright © University of Pretoria 2025. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences